1,182 research outputs found

    Molecular Dynamics of XFEL-Induced Photo-Dissociation, Revealed by Ion-Ion Coincidence Measurements

    Get PDF
    X-ray free electron lasers (XFELs) providing ultrashort intense pulses of X-rays have proven to be excellent tools to investigate the dynamics of radiation-induced dissociation and charge redistribution in molecules and nanoparticles. Coincidence techniques, in particular multi-ion time-of-flight (TOF) coincident experiments, can provide detailed information on the photoabsorption, charge generation, and Coulomb explosion events. Here we review several such recent experiments performed at the SPring-8 Angstrom Compact free electron LAser (SACLA) facility in Japan, with iodomethane, diiodomethane, and 5-iodouracil as targets. We demonstrate how to utilize the momentum-resolving capabilities of the ion TOF spectrometers to resolve and filter the coincidence data and extract various information essential in understanding the time evolution of the processes induced by the XFEL pulses

    Photoelectron Angular Distributions for Two-photon Ionization of Helium by Ultrashort Extreme Ultraviolet Free Electron Laser Pulses

    Full text link
    Phase-shift differences and amplitude ratios of the outgoing ss and dd continuum wave packets generated by two-photon ionization of helium atoms are determined from the photoelectron angular distributions obtained using velocity map imaging. Helium atoms are ionized with ultrashort extreme-ultraviolet free-electron laser pulses with a photon energy of 20.3, 21.3, 23.0, and 24.3 eV, produced by the SPring-8 Compact SASE Source test accelerator. The measured values of the phase-shift differences are distinct from scattering phase-shift differences when the photon energy is tuned to an excited level or Rydberg manifold. The difference stems from the competition between resonant and non-resonant paths in two-photon ionization by ultrashort pulses. Since the competition can be controlled in principle by the pulse shape, the present results illustrate a new way to tailor the continuum wave packet.Comment: 5 pages, 1 table, 3 figure
    corecore